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Abstract

Airflow is a critical factor that influences air quality, airborne contaminant distribution, and 

disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant 

transport effect model seeks to build exposure-spatial relationships between contaminant sources 

and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a 

variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a 

coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen 

exposure component. The general aircraf-tcabin air-contaminant transport effect model was 

applied to datasets from the University of Illinois and Kansas State University and also to case 

study information from a flight with probable severe acute respiratory syndrome transmission. 

Data were fit to regression curves, where the dependent variable was contaminant concentration 

(normalized for source strength and ventilation rate), and the independent variable was distance 

between source and measurement locations. The data-driven model showed exposure to viable 

small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a 

twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle 

experiments, and flight infection data for severe acute respiratory syndrome. The study supports 

the airborne pathway as part of the matrix of possible disease transmission modes in aircraft 

cabins.
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Introduction

National Institute for Occupational Safety and Health (NIOSH) research into the aircraft 

cabin environment began with a request from the Federal Aviation Administration (FAA) to 

study health effects among aircraft crews. A review of previous studies showed that female 

flight attendants may be at increased risk of adverse reproductive outcomes (Waters et al. 

2000). Exposure assessments and epidemiologic studies in the areas of radiation and cabin 

air quality studies followed (Waters et al. 2000; Grajewski et al. 2002; Whelan et al. 2002). 

Difficulties in conducting studies in the passenger aircraft cabin environment during flight 

led to the decision that further work be done using realistic cabin mock-ups and 

computational fluid dynamics (CFD) to understand the behavior of any air contaminants 

present.

The aircraft cabin environment is maintained during flight by the environmental control 

system (ECS). It is no small accomplishment to provide a safe atmosphere at cruise altitude, 

say 35,000 ft. In addition to pressurization, the ECS provides clean outside air to the cabin, 

which has a high occupancy density compared to, for example, office buildings and 

classrooms. In newer aircraft, approximately 50% of the air supplied to the cabin has been 

recirculated and passed through a high-efficiency particle air (HEPA) filter, with the 

remaining supply volume coming from the outside. The ECS is designed to use the length of 

the cabin as a plenum, so that air is supplied and exhausted at a velocity that is constant with 

respect to the length of the plane. Also, the direction of flow out of the supply and into the 

exhaust slots is in the seat-row direction, perpendicular to the aisle. The movement of air 

between seat rows is thus minimized in the ECS design concept.

While the ECS is intended to create airflow from the supply outlet that is two-dimensional, 

the flow in the open space of the cabin is freer and somewhat turbulent, insofar as it is 

characterized by fluctuations in velocity (speed and direction). Moreover, the supply flow in 

a real operating aircraft can be three dimensional and time varying. Liu et al. (2012) 

conducted experiments in the first-class cabin of an MD-82 and reported that “… velocity 

magnitude, velocity direction, and turbulence intensity varied significantly from one slot 

opening to another” (p. 33–44).

A flow can be deconstructed into its Reynold’s-averaged velocity components:

(1)

where each instantaneous component, U(t), is the sum of a time average and a fluctuation 

with a time average of zero (Hinze 1975). Air contaminants, such as small droplets from an 

exhaled breath or a cough, are transported by the fluctuations, even though the average of 

the fluctuations is zero. The ECS then creates two competing processes, one that is intended 

and another that is perhaps impossible to avoid— (1) removal of potentially contaminated 

cabin air into the exhaust and replacement with clean air and (2) movement of contaminants 

within cabin air by flow fluctuations. Fluctuations are present, even in the hypothetical 

absence of obstructions, moving bodies, and thermal plumes.
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Airflow and contaminant transport research has taken place in collaboration with many 

expert partners. The data generated by collaborations have been flow fields measured by 

experiments with realistic mock-ups or calculated using CFD. The flow fields have 

consisted of velocity, turbulence parameters, and either gas or aerosol contaminant 

concentration.

CFD simulations took place in collaboration with a commercial airliner manufacturer (Lin et 

al. 2005a, 2005b). At the University of Illinois, experiments in a five-row, twin-aisle mock-

up, shown in Figure 1, delivered volumetric particle tracking velocimetry (VPTV) images of 

cabin flow seeded with helium bubbles and tracer gas (CO2) concentration fields generated 

by three source locations and three ventilation rates (Sun et al. 2005; Wang et al. 2006; Wei 

et al. 2009; Zhang et al. 2005). Sandia National Labs provided a massively parallel 

computing platform for Lin et al. (2006) to complete the CFD simulations, including large 

eddy simulation (LES). Sandia also provided NIOSH with advice on and evaluation of the 

cabin airflow research and suggested that tracer gas experiments would be useful. Data in a 

large, wide-body airliner, including velocity and turbulence fields, were gathered by the 

University of Tennessee, at the FAA Aero-medical Research Institute (Garner et al. 2003). 

They also created detailed CFD simulations of the fluctuating cabin flows in that aircraft and 

in a corporate jet (Baker et al. 2000). NIOSH provided a review of Tennessee’s report to the 

FAA (Baker et al. 2006).

Kansas State University (KSU) has conducted experiments in an 11-row, twin-aisle mock-

up. Purdue University has done large-scale CFD simulations, including the wake effect of a 

body moving in the aisle (Rai and Chen 2012; Mazumdar et al. 2011). Some collaborators, 

including KSU (Hosni and Jones 2001) and Purdue, and NIOSH researchers were involved 

in research projects sponsored by ASHRAE and the development of an ASHRAE standard 

for aircraft cabin ventilation.

Much work has been done; yet the role of ventilation in controlling disease transmission in 

aircraft cabins remains opaque. There is consensus that the issue is complex due to the many 

variables involved. Figure 2 diagrams possible modes of transmission and variables 

discussed during the 2009 Trans-portation Research Board (TRB) conference (TRB 2012). 

The airflow-related portion of disease transmission was recently addressed, through 

deterministic and probabilistic methods, by Gupta et al. (2012).

In an effort to pull immediately useful information out of the detailed, high-quality studies 

done to date, a simple model and a modeling framework are presented here. The general 

aircraft-cabin air-contaminant transport effect (GAATE) model seeks to build exposure-

spatial relationships between contaminant sources and receptors, quantify the uncertainty, 

and provide a platform for incorporation of future studies. To put this model in context, of 

the many variables presented in Figure 2, the GAATE model involves only the five variables 

indicated by the lighter gray elements of the diagram.

Knowledge of the infection risk to flight crews and passengers is needed to form a coherent 

response to an unfolding epidemic. An essential part of infection risk is exposure, and 

exposure may have an airborne component. The infection with severe acute respiratory 
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syndrome (SARS) of flight attendants on a flight from Hong Kong to Beijing on March 15, 

2003, is evidence of the risk faced by these workers, who in some situations find themselves 

in the role of first responders. Moreover, the Association of Flight Attendants (AFA) asked 

the FAA for protection from SARS (AFA-WCA 2003). The goal of the GAATE model, 

then, is to provide useful information to authorities for addressing exposure incidents 

involving SARS, avian flu, H1N1, and other potentially lethal agents and to provide 

guidance to emergency response personnel.

Methods

Combining datasets

The GAATE model can be thought of as a meta-model, that is, a model built from other 

models or studies. As such, the first step is solicitation of contaminant transport data for 

aircraft cabin environments from research partners. These datasets must be placed on a 

common footing, normalized to remove sources of meaningless variability. The large meta-

dataset thus formed is amenable to statistical analysis. Variables that must be normalized are 

emission rate of the contaminant source and air change rate of the cabin. The ratio of these 

two terms is, under steady-state conditions and perfect mixing, the contaminant 

concentration. However, the emission rate is often not constant or precisely known in 

aircraft cabin experiments. Consider the release of a known mass of powder, in view of the 

difficulty of expression as a rate. This circumstance led to using a data-driven reference 

concentration.

There is no location within the cabin where the steady-state, perfectly mixed concentration 

can be measured. Two imperfect substitutes for this idealized quantity are the average of 

concentrations at all measurement locations and the maximum measured concentration. 

These variables are designated CAVE and CS, respectively. Because each of these has its 

strengths and weaknesses, a reference concentration was defined as the average of CAve and 

CS in the interest of robustness of the method. In the current study, the data were then 

normalized by dividing the measured concentration at a given seat location by this reference 

concentration:

(2)

where CAVE is the spatial average concentration over all measurement locations, and CS is 

the maximum concentration (occurring usually nearest to the source). Since the cabin air is 

not well-mixed, inclusion of CS helps to make CREF more representative of source strength. 

Conversely, CAVE is included because CS by itself would introduce too much variability due 

to near-source anisotropy. Also, CAVE is a reasonable indicator of air change rate. The 

dimensionless concentration variable used in the analyses is then the ratio of the measured 

concentration, CMEAS to CERF:

(3)
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If the measurements are made in the presence of a background concentration, C0, as was the 

case with the CO2 tracer experiments, a more general form of the equation is needed:

(4)

Thus far, the GAATE model has been applied to datasets from the University of Illinois and 

KSU and also to case study information on the flight from Hong Kong to Beijing on March 

15, 2003.

Statistical modeling

The model chosen currently is regression analysis, where the dependent variable is 

concentration and the independent variable(s) describe location within the cabin. When a 

linear model was used, the regression equation had the general form

(5)

where Yi is the observed quantity (contaminant or pathogen concentration); β0 and β1 are, 

respectively, the y-intercept and slope of the regression line; Xi is the independent random 

variable; and εi is the residual for the ith observation. Various functional forms were chosen 

to attempt a fit to the data, by inspecting a plot of concentration versus distance from the 

source. If a linear model did not fit the data well, exponential regression of the following 

form was used:

(6)

where, in this case, the betas are amplitude and decay parameters, and εi is still the residual 

for the ith observation. In preliminary analyses, distinguishing between the seat letter 

coordinate direction and the row number coordinate direction did not provide a better fit 

than using the simple variable of distance, r. Thus, r was used as the independent variable 

throughout the study reported here.

Illinois data

Measurements of carbon dioxide as a tracer gas were taken in a five-row, twin-aisle mock-

up. Data were generated over 3 air change rates and 2 source locations to form a complete 

block of 6 datasets, in which the measured outcome was concentration at each of 35 seat 

locations. The ventilation rates were 816, 1052, and 1259 m3/h (479.5, 618.18, and 739.8 

cfm), corresponding to 80%, 100%, and 120% of the full ventilation load of a realistic 

operating condition. The two source locations were seats 2B and 4F. The concentrations 

measured at 2-s intervals were time-averaged over 1000 s after the system had stabilized. No 

exhaust air was recirculated, and the gaspers were off. These datasets reflect an isothermal 

scenario. A CFD simulation was performed for the same set of conditions. These results 

were not included in the GAATE model, because they did not fit the same regression 

equation as the experiments, which were considered more reliable. In principle, data 

generated by CFD are reasonable candidates.
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Kansas State data

Kansas State researchers staged three types of contaminant releases, summarized in Table 1: 

CO2 tracer gas, talc particles, and aerosolized Lactococcus lactis.

Cabin mockup—The aircraft cabin mockup facility used in these studies is located in the 

Aircraft Cabin Environment Research Laboratory at KSU. It is based on the geometry of a 

specific airliner but is intended to be representative of a mid-size wide-body aircraft in 

general. The cabin is 9.45 m (31 ft) long and contains 11 rows of seats. The seat spacing is 

825 mm (32.5 in) per row, and the seats are 7 across in a 2–3–2 configuration. The air inlet 

diffusers are from the actual aircraft as is the air distribution system that supplies the 

diffusers.

The air supply design for this aircraft consists of two linear slot diffusers extending the 

length of the cabin near the center ceiling of the cabin, each blowing outward. The inlet 

airflow is uniform along the length of the cabin. The uniformity of this airflow was 

experimentally verified for both sides (Mazumdar et al. 2008). Air exits the cabin through 

continuous floor level exhausts on both sides of the cabin. The mockup is equipped with 

coach seats from the specific aircraft, and each seat is occupied by a thermal manikin with a 

heat output of 100 W. The manikins do not breathe or perspire. All inlet air is conditioned 

and passes through HEPA filtration prior to entering the cabin. There is no recirculation. 

The total airflow rate to the cabin was 660 L/s (1400 cfm) for all data presented.

Description of experiments—The first set of experiments used carbon dioxide (CO2) 

tracer gas to measure contaminant dispersion. The CO2 tracer gas was mixed with helium 

(He) to generate a mixture with density equal to that of air. The tracer gas was at the same 

temperature as the cabin air when injected. Since CO2 is much denser than air, negative 

plume buoyancy results in distorted results if these measures are not taken to ensure neutral 

buoyancy. Calculations and experimental results show that turbulent diffusion is several 

orders of magnitude greater that molecular diffusion, so the molecular diffusion is expected 

to be a negligible consideration in these experiments. The tracer gas was injected 

continuously at low velocity through a vertical tube in the center of either the right or left 

aisle at a height of 1.2 m (48 in) at row 6.

The air was sampled through a seven-port sample tree. All measurements reported are at a 

height of 1.5 m (60 in.). Air was sampled from one port at a time for a minimum of 30 min 

before proceeding to the next port. Once all ports were sampled, the entire tree was moved 

to the next location.

The second set of measurements use talcum powder as a representative solid particle 

contaminant (Beneke et al. 2011). The peak number density for this powder occurred at 

approximately 1.5 µm, and the data presented are for the total particle numbers between 0.5 

and 5.0 µm. Injecting solid particles in a controlled manner without disrupting the cabin 

airflow is difficult. In order to accomplish this feat, a “puff generator” was developed. A 

measured amount of talcum powder was placed in a small cup. A small copper tube 

connected to a source of pressurized air was directed downward at the cup. The airflow was 

turned on and off very quickly by a solenoid valve to generate a very short but intense puff 
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of air that aerosolized the talcum powder without generating any large airflow. Figure 3 

shows seven of the devices being tested simultaneously.

For the experiments, the injection occurred in row 2 and was injected simultaneously at all 

seven seats in the row. Particle concentration was measured using an optical particle counter 

with the instrument placed in the seat, as shown in Figure 3. A straight tube was used to 

collect air samples at a height of 1.18 m (46.5 in.). Prior to injecting the talcum powder, 

aerodynamic particle sizers (APSs) were monitored to verify that the air was free of particles 

and the count rate near zero. Data were then collected for 15 min after injection at which 

time the counts had returned to near zero. The data reported here are the 15-min sums.

The third set of measurements used aerosolized Lactococcus lactis as a surrogate bacteria. 

The bacteria were aerosolized using a handheld mister (Figure 4), and the mist was released 

around head height of the seated “passengers.” Collection plates were located on the top of 

the seat backs. The collection plates were opened for collection 30 min after the L. lactis 

was released. Controls were also run with no bacteria aerosolized to verify that near zero 

counts were obtained, and thus, all counts measured could be attributed to the aerosolized L. 

lactis.

Longitudinal dispersion—Again, it is noted that these three sets of experiments were 

conducted with different distributed media, and this is the first study comparing the three 

airborne contaminant types.

For the tracer gas measurements, the tracer gas was injected at row 6, and measurements 

were made along the entire cabin centerline. For the solid particles measurements, the 

particles were injected at row 2. One APS was located in seat 3D for all experiments and 

was used as a reference. A second APS was placed, in turn, in each of the D seats for rows 

4–11. For the bacteria measurements, the aerosolized bacteria were sprayed along the front 

of the cabin, generally in the row 1 area (Figure 4). Measurements were taken at each seat, 

but, for the purpose of this study, only the data for the three center seats are reported.

Lateral dispersion—The injection for the tracer gas and for the solid particles is the same 

as for the longitudinal dispersion. Tracer gas measurements were made from side-to-side for 

rows 5–9. For the particles, measurements were only made in rows 4 and 7. For the bacteria, 

releases were made at seats 6B, 6D, and 6F, and measurements were collected at all seats. 

The lateral dispersion results for the bacteria release were not included in the GAATE model 

because of the difficulty in assigning a source-receptor distance.

Results

Illinois

The specific form of Equation 5 that provided the best fit to the experimental tracer gas data 

was

(7)
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The regression line shown in Figure 5 has an intercept, β0, of 1.055 and a slope, β1, of 0.493. 

With an R2 value of 0.476, it can be said that 47.6% of the variability in the concentration 

data is explained by the regression model. While the regression passed the normality test (P 

= 0.141), it failed the constant variance test, which is not surprising given that the 

concentration varied much more near the source.

The analysis resulted in the regression line and error bars shown in Figure 5. Error or 

uncertainty applies here in two different ways. β0 and β1 each have 95% confidence 

intervals, [0.9906 ≤ β0 ≤ 1.1194] and [0.4204 ≤ β1 ≤ 0.5660], and these intervals are not 

independent, which is why the blue confidence bands are curved. The red bands indicate the 

uncertainty in the prediction of the C ~ ln (1/r) relation for any member of the population of 

r values. Put another way, the confidence band (blue) addresses the question of whether this 

regression line is the best one possible, while the prediction band (red) addresses the value 

of this regression line as a predictive model.

Because the concentration variability is greater nearer the source, a two-segment linear 

regression was also done to see if the fit could be improved (Figure 6). The slopes of the two 

lines and the breakpoint between them, r = 2.48 m, were both determined in the regression. 

Thus, a physicality—the near-zone/far-zone distinction—was identified by the statistical 

analysis. The freedom to adjust for this phenomenon increased the R2 value from 0.476 to 

0.502, which is only a small improvement. Here also, the analysis passed the normality test 

(P = 0.375) but failed the constant variance test. The near-source behavior is perhaps not 

well described by any kind of model based on the isotropic assumption. However, 

performing the regression on only the far-field data—greater than 2.48 m from the source—

actually lowered the R2 value. The benefit of more data points was apparently greater than 

the cost of the increased variance.

KSU

The regression analysis of the KSU tracer gas data was the least successful of the modeling 

attempts, with an R2 value of 0.317. The large variability near the source suggests that 

grouping the data might show a trend more clearly. In Figure 7, the distance variable has 

been discretized into five bins of 0 < D ≤ 1,…, 4 < D ≤ 5 and assigned distance values of 

0.5,… 4.5 m. Also, only the mean concentrations are plotted for each bin. These 

summarized data fit the curve very well, with an R2 value of 0.988. However, because the 

variability around the mean has been removed from the analysis, the good fit requires 

circumspection. Interestingly, the best-fit model equation did not change very much between 

the two analyses, where the regression models were

(8)

and

(9)

for the individual and averaged data series, respectively.
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The KSU aerosolized bacteria release followed a two-segment linear regression model better 

than any other equation form, even though the R2 value of 0.685 did not indicate an 

especially good fit. Figure 8 shows the statistically determined breakpoint between near and 

far fields as 2.56 m, which is quite close to the 2.48 m found in the Illinois tracer gas data. 

Also apparent in the plot is the large near-field variability, which is responsible for most of 

the deviation from the model.

Of the three contaminant types, the talc particle data was the most explainable using a 

regression model on distance. An exponential decay equation,

(10)

fit the particle counts with an R2 value of 0.778. The relatively good fit shown in Figure 9 

might be attributable to the scarcity of measurements close to the source.

With all KSU data combined and normalized by Equation 3, the large number of 

observations and the varying distributions in the contaminant trials create together a fit that 

is somewhat impressive in its generality but also limited in its explanation of observed 

variability. Equation 11 fit the large dataset with an R2 value of 0.614, indicating that the 

GAATE model concept is potentially useful:

(11)

In-flight SARS case study

The case study data differed from the experiments in several important ways. The data come 

from real cases of infection, the aircraft is single-aisle rather than twin-aisle, and the 

outcome is a binary rather than a continuous variable (Olsen et al. 2003). The fact that the 

data document real infection provides tremendous value, while the single-aisle aircraft 

configuration represents a source of unmodeled variability (i.e., error). Contracting or not 

contracting SARS is a binary variable that was transformed into intermediate fractional 

values by counting the infection rate in a group of seats.

Thus, the dependent random variable was the number of cases in a seat row divided by the 

total number of passengers in that row, e.g., 1/6. The independent random variable in the 

model was row distance. This was defined as the absolute difference between the number of 

the row of interest minus the number of the index passenger’s row. In other words, simply 

the distance measured in rows (Figure 10). Because the index passenger was assumed to 

breathe, cough, or sneeze in the forward direction, a one-row offset was applied so that the 

row in front of the index row became the effective source location.

A three-row grouping was also analyzed in an effort to make the infection rate closer still to 

a continuous variable and to smooth the step-function variability in infection between 

adjacent passengers that might be expected due to individual susceptibility. The grouping 

approach might have been taken with the experimental data as well, but some distance 

information would have been lost. For the real disease cases, the near-field distance 

information is probably too noisy to be valuable.
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The real flight case study data showed a decrease in disease incidence with distance in a 

manner similar to the concentration decrease with distance seen in the experiments with 

various contaminant types. The decrease in SARS incidence with increasing row distance 

was fitted to a linear regression line:

(12)

where I is the infection rate, and D is the distance, measured in rows rather than meters. This 

model accounts for approximately 61% of the variability in the data, as the R2 value is 

0.612. The model line intersects the y-axis (zero distance, D) at an infection rate of 

approximately 30% of passengers and reaches zero incidence at a distance of ten rows. Note 

that this infection-rate/source-distance model behaves as well as the combined KSU 

experimental data model, with R2 values each of 0.61.

The model fit improves modestly to 0.640 if the row in front of the index passenger is 

designated the source row as an accounting for the forward momentum of a cough or sneeze. 

However, the local variability still is hard to model. A symmetric grouping of rows that 

includes one row ahead and behind the source row and the row itself results, understandably, 

in a much better fit, with an R2 value of 0.887. Better still is the three-row grouping 

combined with the one-row offset, plotted in Figure 11. The regression line is

(13)

Discussion

Once a concentration–space relation is established, it can be applied in useful ways. With at 

least half the variability being explained by distance from the source, estimation using these 

simple models is widely applicable in the cabin environment, though the predictive power 

has quantifiable limitations. An interactive graphical tool was built using the idea that the 

relative exposure, taken here as the time average of normalized concentration, can be 

estimated for a source located anywhere in the coach section. Figure 12 shows this idea 

actualized with a program written using software that supports simple graphical tool 

development. By clicking on any seat in the cabin diagram, the exposure is calculated for the 

rest of the ten-row field. The figure is an example of the resultant field from one source 

location.

Such an exposure map can be used to refine assumptions made about how far air 

contaminants, such as small droplets, travel in the cabin. Also, a case history and an 

exposure map may be used together to gauge infectivity by the airborne route. Moreover, 

infectivity and relative exposure can support decisions about which passengers should be 

contacted for follow-up after a reportable disease incident. The concept of seating distance 

from an index patient was used during investigation of rubella exposure on several flights in 

June of 2008 (Kim et al. 2012). While the authors indicated typical contact follow-up zones 

as being the index patient’s row, two rows in front and two rows behind, lap-help children, 

and the flight crew, they attempted follow-up in this investigation, additionally, with all 

passengers who shared a cabin or, for smaller planes, all passengers. They reported that no 
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passengers in the comprehensive follow-up (86% of all passengers) showed evidence of 

rubella infection. They interpreted this result as supporting the adequacy of the customary 

protocol, although they acknowledged that most passengers were found to be already 

immune from rubella through vaccination records, serologic testing, or age.

Clearly, airborne exposure is only one piece of the puzzle. Kim et al. (2012) noted that of 

the three passengers that were considered susceptible to rubella, one was seated four rows in 

front of the index patient on a short domestic flight, and two were seated six and seven rows 

in front of this index patient on an international flight. Without a passenger distance 

exposure metric, it is difficult to know where four rows on a short flight or seven rows on a 

long flight lie on the continuum of cabin exposures. Considering SARS, Table 2 shows that 

the infection rate had decreased by 90% at a distance of approximately eight rows. Even 

though SARS is a different pathogen, this model suggests that a rubella-susceptible 

individual on the longer flight could have become infected if seated significantly closer to 

the index patient. It may be worth considering that the index patient row distances of three, 

four, and five are beyond the customary contact follow-up distance while being closer to the 

index patient than the closest susceptible passenger (six rows) on the international flight in 

Kim et al. (2012).

For the exposure map to be useful, it must be reliable to some degree. In other words, the 

GAATE model must do a decent job of quantifying exposure risk and uncertainty. The five 

datasets presented here have moved the model in the direction of reliability; exactly how far 

is difficult to know. As the number of data points increases, so does the variability. 

Statistical power to draw inferences from a dataset can be thought of as the balance between 

the size of a data set (N) and the variance (σ2) it contains. Power increases as N increases 

and as σ2 decreases.

It is important to acknowledge that data were collected only in coach-class cabins, which 

typically contain large numbers of rows. Longitudinal dispersion in first-class cabins, which 

have far fewer rows and are bounded by bulkheads and perhaps a closed curtain, is likely to 

be quite different, although the nature of the difference is not intuitively obvious. For 

example, the bulkhead could act as a boundary to longitudinal flow and thus promote 

contaminant mixing, or the bulkhead surface could act as a contaminant sink. Larger row 

distance and fewer passengers/thermal plumes would also affect the flow field.

Interactive graphical tool

The use of an independent variable as simple as distance from a source facilitates 

visualization of model predictions as an exposure estimation map on the cabin topology. 

Realization of this idea is a tool that estimates exposure relative to other passengers, when 

the cabin contains a source of airborne contamination, such as an index case passenger. 

Because the tool uses a single regression equation, it can easily be programmed to visualize 

any of the datasets. The example shown in Figure 12 is based on the Illinois tracer gas data 

and an index passenger in seat 32B, although the user can specify any seat in the cabin as the 

source. Naturally, as more data become available, new regression equations can be fitted to 

regression models and adopted into the program.
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Given the four types of data presented here, it is useful to consider what information might 

be drawn out of these data about risk of exposure to disease-bearing pathogens in aircraft 

cabin air. The type of data providing the most dispersive infection risk estimate is the tracer 

gas experiments. Gases diffuse more readily than droplets, and viability does not apply in 

the measurement.

Differences in the Illinois and Kansas State CO2 data arise from differences in airflow 

pattern in the two mockups, even though they are each equipped with real ventilation 

systems from the represented aircraft. Instantaneous fluctuations in indoor airflows are the 

norm, but even time-averaged or Reynolds-averaged flow variables are likely to vary under 

boundary and initial conditions designed to be the same in an experiment. Small variations 

in diffuser geometry can have a large downstream effect on the macro flow pattern. The 

number of seat rows in the mock-up is probably an important variable, as a slow circulation 

was observed during visualization smoke trials in the 11-row cabin at Kansas State that 

would have been suppressed in the 5-row cabin at Illinois, if the boundary conditions there 

had even generated a flow that would contain this pattern. The Coriolis force has also been 

suggested as a possible driver of the very slow clockwise rotation.

Even without a rotation that resulted in spreading the contaminant forward on the port side 

and aft on the starboard side, the more gradual decrease with distance for the KSU data 

(Figure 7) may be explainable. While the Kansas State experiments used a neutrally-buoyant 

CO2-He mixture, the Illinois work used a dilute CO2 mixture, which is heavier than air. 

Thus, the Illinois tracer gas data represents a contaminant with a settling velocity. It is worth 

noting that the distance at which the model predicts a 90% decrease in concentration is 

similar for the Illinois CO2 (6.86 m) and Kansas State particle (6.77 m) datasets.

The particle data is possibly a good indicator of the dispersion of virus-bearing droplets, 

after they have evaporated into smaller infectious material nuclei with low settling 

velocities. While viability is not an applicable concept for the talc particles, viruses do not 

seem to die in air as quickly as bacteria do (Grinshpun et al. 2007).

As CO2 tracer gas bracketed on the dispersive side, bracketing on the least dispersive and 

least viable side, the infecting behavior of virus-bearing particles is the release of a 

bacterialaden water droplet aerosol and subsequent growth on agar plates. Limited viability 

makes this experiment conservative in the estimation of cabin infection as a function of 

distance from a passenger source.

To quantify this idea, Table 2 shows the concentration (C) in the fitted models at 1 m (D1) 

and the distance at which the concentration was reduced by a factor of 10 (D2).

However, real infection information is available for SARS transmission during flight. The 

good fit to a linear model of the rate of SARS infection versus row distance from the index 

passenger is interesting. No other dataset—not gas, particles, or bacteria-laden droplets—fit 

a straight line very well. It is possible that the passengers’ thermal plumes and respiration 

enhanced the longitudinal mixing and decreased the rate of concentration decay with 

distance, thus creating a linear rather than an exponential decrease.
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From inspection of the D2 parameter in Table 2, the Illinois tracer gas, KSU particle, and in-

flight data show similar distances at which the exposure metric has decreased 90% 

compared to what it was at 1, 6.86. 6.71, and 6.36 m, respectively.

The KSU tracer gas data had a low R2 value (0.317), while the grouped and offset flight data 

had a very high R2 value (0.969). While the low R2 takes validity away from the estimation 

of contaminant transport behavior, a consistent observation in the current work is that, as 

data were grouped or averaged to reduce near-field “noise,” the predictive equation 

remained fairly constant while the goodness-of-fit increased dramatically. Thus, the 

grouped/averaged KSU tracer data had an R2 value of 0.988, and the 90% exposure 

reduction distance given by the regression equation was 16.1 instead of 19.3 m.

The linear fit of the in-flight case data suggests that airborne transmission was a path of 

SARS transmission. If the infecting exposure had been from large projectile droplets only, 

the disease pattern would have been less symmetric fore and aft. While momentum does 

play a role, as seen in the improved fit if the row in front of the index passenger’s row is 

considered the source row, the behavior is that when the particle stopping distance is 

reached, the smaller particles remain in the air to mix. Also, if fomites had been the only 

route, more of a step function drop off in cases would have been observed, since the 

likelihood of contacting contaminated surfaces drops off very rapidly outside of the source 

row.

Conclusion

The ability of the GAATE model to make a contribution during the response to an airborne 

disease outbreak depends on its predictive power. Improvements in accuracy may come 

from inclusion of additional datasets. Fortunately, the scalability inherent in this approach 

paves the way to study additional aircraft types, while the models reported here are best 

suited to the aircraft type in which data were collected. Still, it seems plausible that 

contaminant transport variability among commercial passenger aircraft types is not larger 

than differences in pathogen infectivity or individual susceptibility. Also, exposure duration 

affects whether an airborne exposure level leads to infection, and this variable was not 

addressed in the current study.

Exposure to small droplets and post-evaporation nuclei, even at a source distance of several 

rows, is readily apparent. The airborne pathway, then, should be considered part of the 

matrix of possible disease transmission modes in aircraft cabins, unless the pathogen has 

been proven nonviable in air. The similar behavior observed in the Illinois tracer gas, KSU 

particle, and in-flight infection data, as a function of source distance, supports the idea that 

airborne exposure over a distance of several meters is a significant pathway for SARS 

infection.

Logical next steps are to perform regression analyses on additional datasets, perhaps 

including CFD-generated data or statistically simulated (synthetic) datasets. This activity 

should continue to improve the statistical significance of the GAATE model. Incorporation 
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of datasets from other commercial aircraft types and passenger cabin configurations would 

be especially useful.
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Fig. 1. 
B767 mock-up at the University of Illinois.
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Fig. 2. 
Aircraft cabin air quality research (lighter gray) in the context of disease pathways discussed 

at the 2009 TRB symposium.
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Fig. 3. 
Solid particle injection and measurement.
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Fig. 4. 
Release and collection of bacteria.
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Fig. 5. 
Regression analysis of transformed data and 95% confidence and prediction bands (color 

figure available online).
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Fig. 6. 
Two-segment regression on raw data that shows breakpoint between near and far fields.
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Fig. 7. 
Summary data for KSU tracer gas experiments; geometric mean CO2 concentrations within 

each distance bin fit a regression model closely.
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Fig. 8. 
Two-segment piecewise regression yielded an R2 value of 0.685 and a break point of 2.56 m 

between near and far fields.
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Fig. 9. 
Non-linear regression using the model C = 14,150 exp (−0.487r) with R2 value of 0.778.

Bennett et al. Page 24

HVAC&R Res. Author manuscript; available in PMC 2015 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
SARS cases on China Air flight.

Bennett et al. Page 25

HVAC&R Res. Author manuscript; available in PMC 2015 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Infection rate versus distance measured as rows with a three-row grouping. Row distance is 

offset to one row in front of index passenger.
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Fig. 12. 
Example of use of the GAATE model interactive graphic; relative exposure to an air 

contaminant from a source in seat 32B (color figure available online).
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